
Vision, Modeling, and Visualization (2013)
Michael Bronstein, Jean Favre, and Kai Hormann (Eds.)

Progressive Visibility Caching for Fast Indirect Illumination

Justus Ulbrich, Jan Novák, Hauke Rehfeld and Carsten Dachsbacher

Karlsruhe Institute of Technology

Light source Light source Light source(a) Reference (b) Cache 1st bounce

(b) Cache 1st bounce

(c) Cache 2nd bounce

(c) Cache 2nd bounce

(a) (b) (c)

Figure 1: Our visibility caching significantly speeds up tracing of secondary rays, here from 0.15 MRays/s (reference) to
0.70 MRays/s (with the visibility cache). The images were rendered using path tracing where some of the rays (highlighted
by green in the illustrations; solid and dashed lines represent path segments and shadow rays, resp.) were traced using our
visibility cache with 2000 shadow maps achieving 4.7× higher throughput of secondary rays per second.

Abstract
Rendering realistic images requires exploring the vast space of all possible paths that light can take between emit-
ters and receivers. Thanks to the advances in rendering we can tackle this problem using different algorithms;
but in general, we will likely be evaluating many expensive visibility queries. In this paper, we leverage the ob-
servation that certain kinds of visibility calculations do not need to be resolved exactly and results can be shared
efficiently among similar queries. We present a visibility caching algorithm that significantly accelerates compu-
tation of diffuse and glossy inter-reflections. By estimating the visibility correlation between surface points, the
cache automatically adapts to the scene geometry, placing more cache records in areas with rapidly changing
visibility. We demonstrate that our approach is most suitable for progressive algorithms delivering approximate
but fast previews as well as high quality converged results.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction

Visibility computation, one of the principal components of
realistic image synthesis, is generally a costly operation that
often represents the bottleneck of rendering algorithms. It
is known that precise calculation of visibility is usually re-
quired only for certain types of rays, e.g. primary or sec-
ondary specular rays [YCK∗09]. Since these rays are rather
coherent, tracing them is fast and can be further accelerated,
e.g. using packets or hardware rasterization. In contrast, sec-
ondary rays are much more incoherent, requiring costly ran-
dom memory accesses. Fortunately, many applications tol-
erate a certain level of imprecision when tracing these rays
and thus we can sacrifice a little amount of accuracy in favor
of higher performance [CNS∗11, ND12].

In this paper, we address the problem of expensive vis-
ibility computation by caching and subsequently reusing
it. We build upon the work of Clarberg and Akenine-
Möller [CAM08] who analyze correlation in visibility for
different points in the scene. They demonstrate that since
spatially and orientationally nearby surfaces tend to “see”
similar parts of the scene, we can capture the visibility infor-
mation only sparsely and reuse it for nearby queries. How-
ever, their analysis and the algorithm are tailored predomi-
nantly for computing direct illumination from environment
maps. We show that visibility correlation can be exploited
also for indirect illumination. For this, we use distance
(shadow) maps and derive a new measure to assess the corre-
lation that is not limited to binary visibility only [CAM08].

c© The Eurographics Association 2013.

J. Ulbrich, J. Novák, H. Rehfeld & C. Dachsbacher / Progressive Visibility Caching for Fast Indirect Illumination

We primarily focus on progressive rendering algorithms
that are becoming increasingly popular in lighting design
and cinematic industry. These synthesize final results incre-
mentally over time, providing fast previews as well as high
quality results when given more time. Our technique fits
into such scenario and accelerates visibility computation by
constructing an initial visibility cache, which is then further
refined during the progressive rendering by improving the
placement of the cache records. The iterative nature of the
rendering algorithm enables leveraging additional informa-
tion, e.g. the utility of each cache record, which can be com-
bined with the correlation measure providing an efficient re-
finement strategy. Our main contributions in this work are:

• New measure for assessing visibility correlation between
distance-based shadow maps.
• Easily adjustable refinement heuristic trading the utility

and local correlation of cache records.
• Progressive visibility caching algorithm with user-defined

maximum memory footprint.

2. Previous Work

Caching Techniques. Caching specific terms of the ren-
dering equations is a common optimization to many ren-
dering algorithms. Ward et al. [WRC88] demonstrated that
irradiance can be efficiently cached and reused for nearby
surface points. This has been further extended to radiance
caching [KGPB05], [SNRS12], and also to participating me-
dia [JDZJ08]. Walter et al. [WDP99] propose to cache and
reproject results from the previous frame to quickly synthe-
size the current frame. Yao et al. [YWC∗10] use a small
number of well chosen shadow maps to cache visibility and
trace photons only using the shadow maps. Since estimating
the quantity directly from the cache will inevitably introduce
bias, many approaches use it to “only” guide the sampling
of incident light. This can be done by building a significance
cache in world space [BRDC12], or by creating a sparse set
of screen-space distributions for importance sampling the il-
lumination from a large set of point lights [GKPS12].

The most relevant to ours is the work of Clarberg and
Akenine-Möller [CAM08], who identify regions of points
with highly correlated hemispherical visibility. They lever-
age this information to adaptively place a number of binary
visibility maps that are used as a control variate for sam-
pling direct illumination from environment maps. To reduce
the noise in areas with partial occlusion, Ghosh and Hei-
drich [GH06] propose correlated visibility sampling. Popov
et al. [PGSD13] quantize the visibility function into clusters
to share visibility samples inside these clusters.

Shadow Maps. Shadow Maps (SM) [Wil78] store depth
values to front-most surfaces as seen from a single point.
The coherent nature of the SM allows for an efficient gener-
ation using hardware rasterization. Nevertheless, generation
of shadow maps can still be the bottleneck of rendering algo-

rithms. Ritschel et al. [RGK∗08,REH∗11] accelerate the cre-
ation of imperfect shadow maps using a coarse, adaptively
placed set of point samples of the scene geometry. They also
compress large sets of SMs into a data structure that allows
for arbitrary visibility queries [RGKS08]. SMs can also be
used to retrieve properties of the front-most surfaces: Dachs-
bacher and Stamminger [DS05] enhance SMs with color and
normal information to efficiently generate VPLs. For a thor-
ough overview of shadow mapping we refer the reader to the
survey by Scherzer et al. [SWP11].

Progressive Algorithms. Most high-quality rendering al-
gorithms are still prohibitively expensive for interactive
applications. Making them progressive enables fast feed-
back [DKL10], interaction [LSK∗07], and even convergent
results [HOJ08]. Since we target these applications we refine
the cache progressively maximizing its overall entropy.

3. Visibility Caching

In order to make our caching algorithm efficient, we need
to store the visibility information in a form that allows in-
expensive updates and fast queries. One option would be to
store the mutual binary visibility of arbitrary pairs of points;
however, such representation requires elaborate and possi-
bly expensive look-ups. Thus, rather than storing one-to-one
binary visibility, we opt to cache one-to-many distance in-
formation: for a given surface point we use a shadow map
to store the distance to all visible surfaces. In contrast to
a binary representation, the distance also allows for a fast
retrieval of nearest surface points. We leverage this in the
image-space path tracing described in Section 4.2.

Our visibility cache consists of a number of records (i.e.
shadow maps) that are sparsely distributed over the surfaces
of the scene. Visibility between any two points is resolved
by finding a nearby cache record and then comparing the
distance between the points to the corresponding value from
the shadow map. The key component of our visibility cache
is the refinement scheme, which places cache records only
on relevant surfaces.

Surface points with similar orientation that are close to
each other have similar hemispherical visibility [CAM08].
Figure 2 illustrates that the amount of correlation is depen-
dent on the local curvature and the surrounding geometry. To
maximize the amount of information captured by the cache,
we need to place the cache records adaptively, i.e. more
densely around areas with low correlation. We proceed in the
following steps: first, we sample the surfaces sparsely and
create an initial set of cache records, and link them to their
spatially and orientationally nearby neighbors. Then, we as-
sess the gradient of the hemispherical visibility and gather
statistics from the rendering algorithm to estimate the utility
of each record. Finally, we improve the cache by progres-
sively replacing the most redundant and rarely used records.
We detail each step in the following sections.

c© The Eurographics Association 2013.

J. Ulbrich, J. Novák, H. Rehfeld & C. Dachsbacher / Progressive Visibility Caching for Fast Indirect Illumination

p q
p

p q
p q

q

Figure 2: Hemispherical visibility: on the left the visibility
of point p strongly correlates with that of point q (striped
area), in the middle and right examples the correlation is
reduced due to geometric properties and nearby occluders.

3.1. Initial Distribution

We start by tracing paths from the camera creating a cache
record at each bounce of the path. This ensures that the ini-
tial records are placed at locations where they are likely to
be used. We improve the uniformity of the initial distribu-
tion by rejecting records that are close to the existing ones.
Then we capture the hemispherical visibility of each record
by rendering the scene into paraboloid shadow maps.

To analyze how the visibility of a cache record correlates
to its local neighborhood, we connect each record to a num-
ber of neighbors that score the highest according to a weight-
ing function w, which trades the spatial and angular distance.
As the weighting function we use the one from [CAM08];
we provide the definition in Appendix A for completeness.

3.2. Importance of Records

Our main contribution is how we assess the importance of
each cache record w.r.t: 1) capturing the global visibility,
and 2) being useful for the rendering algorithm. To this end,
we keep track of two quantities, correlation and utility, and
then combine them into a single intuitive importance func-
tion, which defines whether the cache is important or can be
removed. The following paragraphs detail how we estimate
each component of the importance function.

Visibility Correlation. In order to estimate the visibility
correlation between a record p and its neighbor p′ (see Fig-
ure 3 left and center) we sample several directions within
the upper hemisphere of p. For each direction d we find out
whether the surface point x seen along this direction is visi-
ble to both cache records. We first retrieve point x by fetch-
ing the distance from the paraboloid shadow map of p. Then
we compute direction d′ = x− p′, and analogously obtain
the closest point x′ visible from p′ along d′. By comparing
the distance between x and x′, we effectively assess whether
both cache records see the same surface. To estimate the
overall correlation of the two records, we count the relative
number of directions for which ‖x−x′‖ is smaller than a
certain threshold. For each cache record i we store the aver-
age correlation ρi to all its neighbors and use it to identify
regions with excessive or insufficient number of records.

p p

x x

d
d

candidates

neighbors
p p

x x≈
dd jk

df

Figure 3: To estimate the correlation in visibility between
p and its neighbor p′ we sample directions and evaluate if
the respective distances project to the same (left) or different
(middle) surface points. The right image shows the place-
ment of a new cache record.

Utility of Records. Additionally, we also estimate the rel-
ative utility µi = ui/umax of each cache record i, where ui is
the number of times the rendering algorithm actually used
the cache record i, and umax is the maximum of these values.
Records with low utility should be removed and placed else-
where to improve the local visibility representation. This en-
ables adapting the cache to the specifics of the rendering al-
gorithm, e.g. the number of indirect bounces in a path tracer,
as well as to dynamic camera movements. As such, exact
definition of ui depends on the rendering algorithm; we pro-
vide two examples in Section 4.

Importance Function. Finally, we define the overall im-
portance function γ, which is used during the progressive re-
finement to identify records with low correlation ρi and high
utility µi as:

γi = lerp(1−ρi,µi,α). (1)

The global parameter α balances the influence of ρ and µ on
the progressive refinement and can be adjusted by the user.
Higher values increase the impact of the correlation, lower
values emphasize the utility of records. We discuss the range
of meaningful values of α in Section 5.

3.3. Progressive Refinement
The key component of our visibility caching is a progressive
refinement, during which we add new records to regions with
low correlation. Once the cache reaches its capacity we con-
tinue refining by first removing record i with the lowest im-
portance γi before placing a new record k. We simply delete
i and mark its neighbors for updating. Then we search for
a region with poorly sampled visibility by finding record j
with the highest importance γ j.

Our intention is to place the new record k on a surface
in the vicinity of j, but not too close to any of the existing
records as this would not reveal new information. For this,
we generate a number of samples on a disk, which is parallel
to the surface but slightly offset above j (see Figure 3, right).
Then we project the samples onto surfaces around j using
ray casting, creating a number of candidates. Candidates that
are too far from the disk, e.g. due to discontinuous surfaces

c© The Eurographics Association 2013.

J. Ulbrich, J. Novák, H. Rehfeld & C. Dachsbacher / Progressive Visibility Caching for Fast Indirect Illumination
Po

si
tio

n
3

Po
si

tio
n

2
Po

si
tio

n
1

step 0 1000

2000 2080

3000 5000

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

step 0 1000

2000 2800

3000 5000

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Visualization of the progressive refinement. The left column shows renders from three different camera positions.
The middle and right columns show Voronoi diagrams constructed from the cache records (represented by black dots) with
individual cells colored w.r.t the importance function γ; blue is low, red is high. The camera stays in the initial position (a,b) for
1000 refinement steps (c), then gradually moves above the bed in 1000 steps (d,e) and stays there for 800 steps (f), then rapidly
turns towards the cupboard in 200 steps (g,h), and stays still for another 2000 refinement steps (i). In the initial position (b) or
after each movement (e, h) the cache oversamples some and undersamples other parts of the scene. The progressive refinement
helps to equalize the importance function over the set of all records (right column).

around j, are discarded to prevent placing the new record
far away from j. From the remaining we select candidate
k, which is farthest to existing records (w.r.t Equation 2) to
avoid redundancy. Finally, we render the shadow map for k
and update the neighbor links and the correlation values for
k, its neighbors, and all previously marked records.

4. Results and Applications

The estimation of correlation between cache entries as well
as the rendering of shadow maps is computed on the GPU.
All timings were measured on an Intel Core i7-2600 with 12
GB of RAM and an NVIDIA GTX 560 GPU. We use be-
tween 2k and 4k cache records sampling the visibility using
paraboloid shadow maps with 128×128 resolution.

Figure 4 visualizes the importance function in a sequence
with moving camera (please see the accompanying video).
The camera stops in three different positions (a, d, g) to
emphasize the progressive refinement: images in the middle
column show the importance function in the moment when
the camera stops, the right column illustrates the adaptive re-
finement after a number of steps (the cumulative step count
is shown in the top right corner). Notice how the initial dis-
tribution (b) with 4000 records is adaptively refined (c) by
moving records with lower importance to areas with poorly
captured visibility, and then further adjusted w.r.t the chang-
ing camera position (d-i).

Operation Location Time
Find records i and j CPU 0.042 ms
Place record k CPU 0.044 ms
Update kd-tree CPU 0.711 ms
Mark old neighbors of i GPU 0.089 ms
Find new neighbors GPU 0.075 ms
Render paraboloid GPU 19.843 ms
Compute correlation GPU 0.035 ms
Copy back to CPU GPU/CPU 0.758 ms

Table 1: Performance breakdown of a single refinement step
in the Bedroom scene (790k tris) with 4k cache records.

0
0

0.011

0.030

0.025

1000 2000 2800 3000 5000
Number of refinement steps

Va
ria

nc
e

of

position 1 position 2 position 3transition

steady camera
moving camera

position 1 position 2 position 3transition

Figure 5: Variance of the importance function γ for the se-
quence shown in Figure 4. The blue and red curves corre-
spond to steady and moving camera, respectively.

c© The Eurographics Association 2013.

J. Ulbrich, J. Novák, H. Rehfeld & C. Dachsbacher / Progressive Visibility Caching for Fast Indirect Illumination

Reference

3.5k VPLs ~ 17 sec. 3.5k VPLs ~ 10 min. 128k VPLs ~ 10 min.

Ours (equal VPLs) Ours (equal time)

Figure 6: GPU-based VPL rendering of indirect illumination in the San Miguel scene (24M triangles): our shadow map-based
caching of visibility (left and right) renders 36× faster than the traditional approach (middle), where shadow maps are created
for each VPL. The traditional VPL rendering shows artifacts (e.g. the bright splotch in the arcade) even after 10 minutes.

The progressive refinement concentrates records inside
the view frustum and in areas with difficult visibility while
locally preserving the blue noise-like distribution. Table 1
shows the cost of individual operations of a single refinement
step. Re-rendering the shadow map (19.8 ms) for the moved
cache record clearly dominates the overall cost (21.9 ms).

In Figure 5, we plot the variance of the importance func-
tion over time. Notice how the variance decreases and the
importance function becomes more and more equalized af-
ter the camera stops in a new position. When converged, all
records of the cache are roughly equally important.

4.1. Instant Radiosity

Our visibility caching can be applied to existing many-
light algorithms that synthesize indirect illumination pro-
gressively: in each frame the algorithm traces a number of
light paths, deposits virtual point lights (VPLs), and uses
them to illuminate the scene. We demonstrate the benefits
of our caching on a GPU implementation of instant radiosity
(IR), where we use the cache to resolve the visibility be-
tween surface points and VPLs. As a reference, we create
one shadow map per VPL to resolve visibility. Note that both
implementations use the exact same set of VPLs.

When using our visibility cache, we need to generate only
a single shadow map per frame to progressively refine the
cache distribution, and the generation is thus well amor-
tized over several VPLs and successive frames. To resolve
the visibility, we first assign three nearest cache records to
each VPL. The occlusion of each VPL is then computed as
a weighted average of visibility queries between the shading
point and the three assigned records. Assigning more records
did not improve the result; less records tend to produce vis-
ible artifacts. The normalized weights are obtained from the
weighting function w (see Appendix A), which is evaluated
for the VPL and the cache record. If the record does not have
valid data for the visibility query (i.e. the direction is not cap-
tured by the hemispherical SM), we set the weight to zero.
The utility of each cache record is computed by accumulat-
ing its weights over all queries within the current frame.

ReferenceOurs (equal VPLs) Ours (equal time)

52k VPLs ~ 17 sec. 52k VPLs ~ 2 min. 367k VPLs ~ 2 min.

Figure 7: GPU-based VPL rendering of the Sibenik cathe-
dral (241k triangles): we achieve 7× higher performance.

Figure 6 compares the reference and our visibility caching
using equal number of VPLs and equal rendering time.
While both approaches are approximate (even the reference
suffers from artifacts due to limited resolution of shadow
maps), the visibility caching performs significantly faster al-
lowing for 36× more VPLs with the same rendering time.

Figure 7 shows a similar comparison for the Sibenik
cathedral, where we achieve 7× higher performance. The
main bottleneck of the reference is the expensive creation of
shadow maps: we need to render all shadow maps for about
500 VPLs in each frame, which takes 93% of the frame
time. With the visibility cache, which in this case contains
3000 (view-independent) records that are precomputed in
8.5 sec., only one shadow map needs to be rendered for each
refinement step. In both cases, we accelerate the creation of
shadow maps and lighting by VPLs using a GPU.

4.2. Image-Space Path Tracing

Our visibility caching can also be efficiently applied to path
tracing. We first augment the cache with surface normals,
material references, and texture coordinates; i.e. for each
record we store a reflective shadow map (RSM) [DS05], ob-
taining an approximate representation of the entire scene.

c© The Eurographics Association 2013.

J. Ulbrich, J. Novák, H. Rehfeld & C. Dachsbacher / Progressive Visibility Caching for Fast Indirect Illumination

We start tracing the paths with an accurate scene represen-
tation (e.g. BVH with triangles); however, once we discover
the first (or second) bounce along the path we switch to the
visibility cache. We search for three records in the vicinity
of the path vertex and probabilistically select one w.r.t how
they evaluate the weighting function w. Then we look up the
distance along the sampled direction from the cache record;
this defines the next vertex of the path. In order to extend
the path further we fetch the local surface properties from
the RSM, update the path throughput, sample the outgoing
direction, and continue tracing solely within the augmented
visibility cache until the path is terminated. As such, the cost
of tracing a secondary ray amounts to finding the nearest
cache record and fetching few values from the RSM.

In order to evaluate the visibility caching in a reasonably
complex environment, we modified PBRT [PH10] to render
progressively and extended its BVH accelerator to maintain
our visibility cache. During rendering, the modified BVH
collects utility statistics u for each record (we increase ui by
1/dp whenever i is used; dp is the path depth), computes the
correlation values ρ (on the GPU), progressively refines the
cache, and decides whether or not to use the visibility cache.

Figure 1 compares three variants of path tracing in the
San Miguel scene that differ in how much they utilize the
cache, i.e. either from the first or second bounce (see the
illustrations in Figure 1). This scene is particularly challeng-
ing since it contains a lot of high frequency geometry. Some
differences can be seen in the top part of the foliage on the
right, which is slightly brighter than in the reference solu-
tion. Using the cache immediately after the first bounce can
result in structured artifacts. These can be largely avoided
by using the cache only from the second bounce. Tracing
secondary rays using the visibility cache is 4.7× faster than
with a regular BVH. The overall rendering is 1.56× faster,
which is less than one would expect. This is due to the small
relative number of secondary rays since the scene is “open”
and the paths are thus rather short.

Figure 8 shows another example of path tracing in the
Bedroom scene. Compared to the rendering time of a sin-
gle frame (6.1 sec.) the overhead of maintaining the cache
with 4000 records is negligible (21.9 ms). The performance
of tracing secondary rays increases by a factor of 2.

5. Discussion of Parameters

The accuracy of the cache is related to the area density of the
visibility samples (and thus the number of cache records)
and the resolution of the shadow maps, both of which de-
fine the memory footprint of the cache. To double the den-
sity we need to quadruple the number cache records. In our
implementation, all cache records are placed in the GPU
memory. Depending on the scene, we use between 2k and
4k cache records capturing the visibility using paraboloid
shadow maps with 128×128 resolution.

Reference

Cache 1st bounce

Cache 2nd bounce

Figure 8: Comparison of traditional path tracing (top) to
image-space path tracing in the Bedroom scene (790k tris).
The latter uses the visibility cache after the first (middle)
or the second (bottom) bounce. The performance of tracing
secondary rays using our visibility cache (0.67 MRays/s) is
2× higher than using a regular BVH (0.33 MRays/s).

For estimating the local visibility correlation, each cache
record is linked to four neighbors that score the best w.r.t the
weighting function w. Using fewer neighbors leads to poor
estimation; more neighbors often create large neighborhoods
and make the computation more expensive. To estimate the
correlation between two records, we generate 1024 hemi-
spherical directions. Increasing the number of directions did
not improve the estimation. There may still be some vari-
ance in the importance function γ though, but this is due to
the noisy utility statistics from the rendering algorithm. This
can be seen in the accompanying video as flickering of the
false colored Voronoi cells. We did not experience any no-
ticeable impact of the variance on the refinement, but it can
be further reduced e.g. by increasing the number of paths
traced per one refinement step.

The user defined parameter α weights the impact of the
correlation and the utility on the importance function γ. Set-
ting α to an extreme value often leads to sub-optimal results,
especially in complex scenes. If γ is solely based on the cor-
relation, cache records will be placed around high frequency
features, which may be hidden or unimportant for the cur-
rent camera position. When γ depends on the utility only, the
cache wastes a lot of records on regions with minor changes

c© The Eurographics Association 2013.

J. Ulbrich, J. Novák, H. Rehfeld & C. Dachsbacher / Progressive Visibility Caching for Fast Indirect Illumination

in visibility. Figure 10 illustrates each of these cases. Keep-
ing α between 0.3 and 0.7 produces desired results most of
the time with 0.5 being a good initial value in general.

When placing the new cache record (Section 3.3), we
compute the distance to its furthest neighbor d f and set the
radius of the tangent disk to 0.7×d f . We found that this
value ensures that candidates are not placed too far from the
record to be improved, but we still cover enough space to
create at least one that is not too close to any of the existing
records. To prevent creating a new record too far due to holes
in the surface around j, we also discard candidates that are
further than 1.25×d f from the disk. Generating candidates
that fulfill all criteria may become lengthy if the geometry in
the target region happens to be high frequency (e.g. the fo-
liage in Figure 1). Since this is undesired, we progressively
double d f , and half the number of required candidates (we
start with 10) whenever 50 disk samples are not sufficient.

6. Limitations and Future Work

Caching the visibility in environments with high frequency
geometry (e.g. trees) is generally challenging. Although our
algorithm handles these cases, the discretized cached repre-
sentation may be too coarse, leading to artifacts. This could
be solved by tightly bounding all difficult geometry with
proxies and using accurate accelerators for tracing rays in-
side the proxies.

In all our examples we use a straightforward approach to
resolve the visibility using the cache: we simply “snap” the
ray to the selected record and determine the visibility along
the sampled direction. We compare this approach to ray
marching in Figure 9, where the cache records are used also
for direct illumination for better visualization. While march-
ing along the ray and checking for an intersection with the
height field defined by the shadow map improves the qual-
ity, it also comes at a certain cost, which in our examples did
not pay off. An optimized implementation could yield better
quality with performance only slightly worse than snapping.

While our approach is suitable for interactive previews
with dynamic camera, the method is currently limited to
scenes with static geometry only. Detecting (parts of) cache
records that need to be updated due to dynamically changing
geometry is an interesting future work.

7. Conclusion

The rationale behind using progressive algorithms is to pro-
vide low quality previews fast, and converge to high-quality
results gradually over time. Our visibility caching naturally
fits into these scenarios: we start with a coarse representa-
tion that is refined over time to minimize the artifacts. By
reducing the cost of visibility queries we enable the render-
ing algorithm to draw more samples that are necessary to
reduce the variance of indirect illumination estimators.

Reference

Snapping

Ray marching

Prob. selection & Snapping

Prob. selection & Ray marching

Figure 9: Comparison of snapping and ray marching. The
cache contains 1000 records and the refinement was dis-
abled. First, we either use the nearest record or probabilis-
tically select one of the nearest records. Then we either snap
the ray to its center or march along the ray and check for an
intersection with the shadow map.

Acknowledgments. This work was supported by the DFG
grant DA 1200/1-1.

References
[BRDC12] BASHFORD-ROGERS T., DEBATTISTA K.,

CHALMERS A.: A significance cache for accelerating
global illumination. Computer Graphics Forum 31, 6 (2012),
1837–1851. 2

[CAM08] CLARBERG P., AKENINE-MÖLLER T.: Exploiting vis-
ibility correlation in direct illumination. Computer Graphics Fo-
rum (Proc. of EGSR 2008) 27, 4 (2008), 1125–1136. 1, 2, 3,
8

[CNS∗11] CRASSIN C., NEYRET F., SAINZ M., GREEN S.,
EISEMANN E.: Interactive indirect illumination using voxel cone
tracing. Computer Graphics Forum (Proc. of Pacific Graphics
2011) 30, 7 (2011), 1921–1930. 1

[DKL10] DAMMERTZ H., KELLER A., LENSCH H. P. A.: Pro-
gressive point-light-based global illumination. Computer Graph-
ics Forum 29, 8 (2010), 2504–2515. 2

[DS05] DACHSBACHER C., STAMMINGER M.: Reflective
shadow maps. In Proceedings of the 2005 symposium on Inter-
active 3D graphics and games (New York, NY, USA, 2005), I3D
’05, ACM, pp. 203–231. 2, 5

[GH06] GHOSH A., HEIDRICH W.: Correlated visibility sam-
pling for direct illumination. The Visual Computer 22, 9 (2006),
693–701. 2

[GKPS12] GEORGIEV I., KŘIVÁNEK J., POPOV S.,
SLUSALLEK P.: Importance caching for complex illumi-
nation. Computer Graphics Forum (Proc. of Eurographics 2012)
31, 2 (2012), 701–710. 2

[HOJ08] HACHISUKA T., OGAKI S., JENSEN H. W.: Progres-
sive photon mapping. ACM Transaction on Graphics 27, 5
(2008), 130:1–130:8. 2

[JDZJ08] JAROSZ W., DONNER C., ZWICKER M., JENSEN
H. W.: Radiance caching for participating media. ACM Trans-
actions on Graphics (SIGGRAPH 2008) 27, 1 (2008), 7:1–7:11.
2

c© The Eurographics Association 2013.

J. Ulbrich, J. Novák, H. Rehfeld & C. Dachsbacher / Progressive Visibility Caching for Fast Indirect Illumination

= 0.5 (balanced)α= 1.0 (utility only)α= 0.0 (visibility correlation only)α

camera frustum

Figure 10: The parameter α of the importance function γ trades between the visibility correlation ρ and utility statistics µ. If
α equals 0 (left), the refinement of the cache is driven only by ρ placing records on surfaces with rapidly changing visibility.
Setting α to 1 (center) concentrates most of the records in the camera frustum. Keeping α between 0.3 and 0.7 (right) provides
a good balance between the two criteria.

[KGPB05] KŘIVÁNEK J., GAUTRON P., PATTANAIK S., BOUA-
TOUCH K.: Radiance caching for efficient global illumination
computation. IEEE Transactions on Visualization and Computer
Graphics 11, 5 (2005), 550–561. 2

[LSK∗07] LAINE S., SARANSAARI H., KONTKANEN J.,
LEHTINEN J., AILA T.: Incremental instant radiosity for real-
time indirect illumination. In Proc. Eurographics Symposium on
Rendering 2007 (2007), Eurographics Association. 2

[ND12] NOVÁK J., DACHSBACHER C.: Rasterized bounding
volume hierarchies. Computer Graphics Forum (Proc. of Eu-
rographics 2012) 31, 2 (2012), 403–412. 1

[PGSD13] POPOV S., GEORGIEV I., SLUSALLEK P., DACHS-
BACHER C.: Adaptive quantization visibility caching. Computer
Graphics Forum (Proc. of Eurographics 2013) 32, 2 (2013), 399–
408. 2

[PH10] PHARR M., HUMPHREYS G.: Physically based render-
ing, second edition: from theory to implementation, 2nd ed. Mor-
gan Kaufmann Publishers Inc., San Francisco, USA, 2010. 6

[REH∗11] RITSCHEL T., EISEMANN E., HA I., KIM J. D., SEI-
DEL H.-P.: Making imperfect shadow maps view-adaptive: high-
quality global illumination in large dynamic scenes. Computer
Graphics Forum (Proc. of EGSR 2011) 30, 8 (2011), 2258–2269.
2

[RGK∗08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL H.-
P., DACHSBACHER C., KAUTZ J.: Imperfect shadow maps for
efficient computation of indirect illumination. ACM Transactions
on Graphics 27, 5 (2008), 129:1–129:8. 2

[RGKS08] RITSCHEL T., GROSCH T., KAUTZ J., SEIDEL H.-P.:
Interactive global illumination based on coherent surface shadow
maps. In Proceedings of graphics interface 2008 (Toronto, 2008),
Canadian Information Processing Society, pp. 185–192. 2

[SNRS12] SCHERZER D., NGUYEN C. H., RITSCHEL T., SEI-
DEL H.-P.: Pre-convolved radiance caching. Computer Graphics
Forum (Proc. EGSR 2012) 4, 31 (June 2012), 1391–1397. 2

[SWP11] SCHERZER D., WIMMER M., PURGATHOFER W.: A
survey of real-time hard shadow mapping methods. Computer
Graphics Forum 30, 1 (Feb. 2011), 169–186. 2

[WDP99] WALTER B., DRETTAKIS G., PARKER S.: Interac-
tive rendering using the render cache. In Rendering Techniques
(Proceedings of the Eurographics Workshop on Rendering) (New
York, NY, 1999), vol. 10, Springer-Verlag/Wien. 2

[Wil78] WILLIAMS L.: Casting curved shadows on curved sur-
faces. ACM SIGGRAPH Computer Graphics 12, 3 (1978), 270–
274. 2

[WRC88] WARD G. J., RUBINSTEIN F. M., CLEAR R. D.: A
ray tracing solution for diffuse interreflection. ACM SIGGRAPH
Computer Graphics 22, 4 (1988), 85–92. 2

[YCK∗09] YU I., COX A., KIM M. H., RITSCHEL T., GROSCH
T., DACHSBACHER C., KAUTZ J.: Perceptual influence of ap-
proximate visibility in indirect illumination. ACM Transaction
on Applied Perception 6, 4 (2009), 24:1–24:14. 1

[YWC∗10] YAO C., WANG B., CHAN B., YONG J., PAUL J.-
C.: Multi-image based photon tracing for interactive global illu-
mination of dynamic scenes. Computer Graphics Forum (Proc.
of EGSR 2010) 29, 4 (2010), 1315–1324. 2

Appendix A: Weighting Function w

To connect cache records with each other, their neighbor-
hood needs to be defined. We connect each record to four
nearby records that score the highest according to a weight-
ing function w, which we adopt from [CAM08]:

w =

(
1−

arccos
∣∣n ·n′∣∣

π

)
︸ ︷︷ ︸

angular difference

(
1− d/dmax

1+5d/dmax

)
︸ ︷︷ ︸

spatial difference

√
1−|n · v|,︸ ︷︷ ︸

surface offset

(2)

where n and n′ are normals of the record and the neighbor,
and v and d are direction and distance towards the neighbor.
Figure 11 illustrates the individual terms.

Taking into account the angular difference between the
respective surface normals prevents connecting surfaces
with opposite orientation. The spatial difference mimics the
observation that the falloff in correlation between cache
records is large at first and then gradually becomes smaller.
Finally, the surface offset penalizes candidates that may have
similar orientation, but are offset mostly along the normal,
i.e. the candidate sits on a surface that is above or below the
cache record.

p q
n

n

p qd
p

q
n

v

angular difference spatial difference surface offset

Figure 11: The weighting function for selecting the nearest
neighbors considers the relative orientation and offset of the
corresponding surfaces (left and right), as well as the dis-
tance between the two points (middle).

c© The Eurographics Association 2013.

